Skip to main content

Meet the Team

Meet Group 11: (Left to Right) Joanna Canagarajah, Olivia Schuler, Peyton Paschell, and Kezia Manoj.

Joanna Canagarajah

Major: Biomedical Engineering
Year: Freshman
Email: jac587@drexel.edu

Olivia Schuler

Major: Biomedical Engineering
Year: Freshman
Email: ols24@drexel.edu

Peyton Paschell

Major: Biomedical Engineering
Year: Freshman
Email: pap86@drexel.edu

Kezia Manoj

Major: Biomedical Engineering
Year: Freshman
Email: km3444@drexel.edu

Hao Cheng, PhD

Advisor
Materials Science and Engineering
Email: hcheng@coe.drexel.edu

Comments

Popular posts from this blog

Week Nine Progress

The progress underwent during week nine of the hydrogel restructuring module entailed rectifying the errors made during the first and second testing rounds conducted during week seven. The results of first and second testing trials revealed egregious errors upon obtaining the results of the spectrophotometry of week eight. The spectrophotometry results delineated a consistent decrease in fluorescent intensity over time. Nonetheless, an ideal graph would illustrate a sustained increase in fluorescent intensity, thereby paralleling an increase in the percentage of therapeutic that is released. The increase in fluorescent intensity which had resulted from the week seven testing may be attributed to the experimental errors which occurred during the construction of hydrogel samples, and are described in full detail in the Week Eight Progress Report.  During week nine, new hydrogel samples were generated in a comparable fashion to the construction of samples during the second phase of t...

Week One Progress

Figure 1: Diagram of preliminary design The culmination of the hydrogel modulation design will yield a hydrogel wound dressing utilized for the therapeutic treatment of first-degree and second-degree exterior burns. A physical prototype of the hydrogel wound dressing will be produced by precipitating food-grade sodium alginate in a calcium chloride solution. The reaction yields spheres of low-density gel surrounded by a thin gelatinous membrane. The construction of an alginate dressing necessitates ionic cross-linking of the alginate solution with calcium ions, as to form the gel component. Both the high-density and low- density hydrogel layers will be generated in unison, before undergoing the freeze-drying process as to produce porous sheets. The physical prototype will be accompanied by a computer generated model of the hydrogel wound dressing, as evidenced in figure 1. The required components to construct the hydrogel adhesive were determined and subsequently purchased. The r...

Week Two Progress

The objectives of the week two lab consisted of preparing for the construction of the therapeutic-infused hydrogel adhesive. As such, a bill of materials was devised to determine the requisite laboratory supplies. It was determined that chemical components and laboratory glassware would be required to conduct the precipitation reaction between calcium chloride and sodium alginate. As the therapeutic agent, to be injected into the hydrogel 'beads', has not yet been determined, a comparable placebo had not been established. Nonetheless, each team member is to conduct research to determine an appropriate therapeutic for the hydrogel adhesive before a comparable placebo may be determined. Research regarding a possible therapeutic agent is to be completed before the week three lab. Once a therapeutic agent is agreed upon, a placebo, of comparable physical properties, will be ordered. The week two activities were completed in preparation for the construction of a preliminary design ...