Skip to main content

FAQ

Q: Why did you choose burns as the injury you will treat with this design?

A: Our group chose to do this project with the goal of treating burns because we think it is a very useful application of hydrogel, but with a lot of improvements to be made. We also think a hydrogel design such as ours, if marketed to first- and second-degree burn victims, could help the healing process and prevent infections by soothing and protecting the wound. You can find more information about our project goal under the Project Overview page.


Q: How did you determine the concentrations of calcium chloride you will use to make each hydrogel layer?

A: After watching this video, the group decided to experiment on our own with the hydrogel using the concentrations shown in the video. Then, we tried again, varying only the concentration of calcium chloride. This allowed us to see what concentrations would yield more viscous hydrogel for use in our thick layer, and what concentrations would yield a less viscous hydrogel for use in our thin layer. You can find more information about our experimental design, including concentrations and more, under the Week Five Progress update.



Q: What signal are you using to measure the hydrogel's release rates?


A: The signal we are using is a fluorescently-labeled bovine serum albumin (FITC-BSA). You can find more information on how we plan to test our hydrogel under the Week Five Progress update.



Q: Why is it important that your prototype therapeutic has a high molecular weight?


A: The molecular weight of our prototype therapeutic must have a high molecular weight, because this is related to the rate at which it will seep through the pores of the hydrogel. The higher the molecular weight, the more control we will be able to have over the release of the therapeutic. You can find more information about choosing our prototype therapeutic under the Week Four Progress update.

Comments

Popular posts from this blog

Week Five Progress

During week five, more research was done and the group was able to decide on the exact concentrations of calcium chloride to use in making each hydrogel layer as well as in the beads. The higher the concentration of calcium chloride, the more dense the hydrogel layer will be. Thus, for the thin, low-density layer, as well as for the low-density beads, a 5% calcium chloride solution will be used. For the thick, high-density layer, a 7% calcium chloride solution will be used. Refer to Figure 1, below, for a visual of the design. Figure 1: Preliminary Diagram of the Hydrogel Wound Dressing   Another task that was completed this week was additional planning for the testing phase. Once the hydrogel has been constructed, samples of it will be placed into cuvettes, and fluorescently-labeled bovine serum albumin (FITC-BSA) will be injected into the cuvettes, one at a time, in intervals of four hours. This will occur over a period of two days, and at the end of the two day...

Week One Progress

Figure 1: Diagram of preliminary design The culmination of the hydrogel modulation design will yield a hydrogel wound dressing utilized for the therapeutic treatment of first-degree and second-degree exterior burns. A physical prototype of the hydrogel wound dressing will be produced by precipitating food-grade sodium alginate in a calcium chloride solution. The reaction yields spheres of low-density gel surrounded by a thin gelatinous membrane. The construction of an alginate dressing necessitates ionic cross-linking of the alginate solution with calcium ions, as to form the gel component. Both the high-density and low- density hydrogel layers will be generated in unison, before undergoing the freeze-drying process as to produce porous sheets. The physical prototype will be accompanied by a computer generated model of the hydrogel wound dressing, as evidenced in figure 1. The required components to construct the hydrogel adhesive were determined and subsequently purchased. The r...

Week Four Progress

Our focus this week was finding the correct placebo for our design. Prior to this week, we had expected to use zinc oxide in our module but we realized it did not have a high enough molecular weight. Therefore, the zinc oxide would disperse from the hydrogel beads too rapidly. After some research and guidance from our professor, we decided to use Fluorescein Isothiocyanate-Bovine Serum Album (FITC-BSA), which is a hydrophilic protein with a molecular weight of 66 kg/mol [1]. FITC-BSA will also be our signal source for measuring the rate of dispersion from the beads. As seen in Figure 1, FITC-BSA is vivid in color and allows the protein's diffusion throughout the hydrogel to be observed easily. We've decided to initially use 0.25 mg/ml as the concentration of FITC-BSA within our design. Figure 1: FITC-BSA (green) seen in samples of HeLa cells [2] References: [1]  Bovine Serum Albumin Conjugates Product Information , 1st ed. Molecular Probes, 2005. [2] S. Sarker, R....