Skip to main content

Week Two Progress


The objectives of the week two lab consisted of preparing for the construction of the therapeutic-infused hydrogel adhesive. As such, a bill of materials was devised to determine the requisite laboratory supplies. It was determined that chemical components and laboratory glassware would be required to conduct the precipitation reaction between calcium chloride and sodium alginate. As the therapeutic agent, to be injected into the hydrogel 'beads', has not yet been determined, a comparable placebo had not been established. Nonetheless, each team member is to conduct research to determine an appropriate therapeutic for the hydrogel adhesive before a comparable placebo may be determined. Research regarding a possible therapeutic agent is to be completed before the week three lab. Once a therapeutic agent is agreed upon, a placebo, of comparable physical properties, will be ordered. The week two activities were completed in preparation for the construction of a preliminary design for the hydrogel adhesive. As such, the most prominent tasks completed for the week three lab, include: the formulation of a bill of materials and research of potential therapeutic agents. The bill of materials, thus far, is as follows:


Bill of Materials
Product Components
Quantity
Price
Ordered Status
Sodium Alginate
4.0 g
$12.95
Yes
Adhesive Materials
N/A
N/A
No
Therapeutic Placebo
N/A
N/A
No
Lab Supplies



Six- Cavity Soap Mold
1
$9.99
Yes
Calcium Chloride
2.0 oz.
$8.29
Yes
150-mL Beaker
2
$10.98
Yes
Syringes
2
$8.99
Yes
Testing Supplies



Food Coloring
29 ml
$8.01
Yes

Total Cost

$59.21


Figure 1:  Bill of Materials



Comments

Popular posts from this blog

Week Nine Progress

The progress underwent during week nine of the hydrogel restructuring module entailed rectifying the errors made during the first and second testing rounds conducted during week seven. The results of first and second testing trials revealed egregious errors upon obtaining the results of the spectrophotometry of week eight. The spectrophotometry results delineated a consistent decrease in fluorescent intensity over time. Nonetheless, an ideal graph would illustrate a sustained increase in fluorescent intensity, thereby paralleling an increase in the percentage of therapeutic that is released. The increase in fluorescent intensity which had resulted from the week seven testing may be attributed to the experimental errors which occurred during the construction of hydrogel samples, and are described in full detail in the Week Eight Progress Report.  During week nine, new hydrogel samples were generated in a comparable fashion to the construction of samples during the second phase of t...

Week Three Progress

During Week Three, we discussed and determined our therapeutic agent for the hydrogel module. After extensive research and comparison of our options, we decided the best-suited therapeutic would be zinc oxide. This substance fits our design so well because it is hydrophobic and will slowly disperse through the pores in the bottom hydrogel layer. Zinc oxide has been used in past hydrogel models and has been proven to be effective. It is an agent that has been used in ointments and supplements to treat burns and prevent infections. Likewise, the possibility of overdosing on zinc-oxide necessitates a solution for controlled therapeutic release. The predominant delivery system for zinc oxide is through medicinal cream, the delivery through which enables the therapeutic threshold of zinc oxide to be increased to levels of high toxicity. Symptoms of zinc-oxide overdose include: fever, chills, vomiting, mouth irritation, stomach pain, and yellowing of the eyes and skin. Consequently, the phar...