Skip to main content

Week Two Progress


The objectives of the week two lab consisted of preparing for the construction of the therapeutic-infused hydrogel adhesive. As such, a bill of materials was devised to determine the requisite laboratory supplies. It was determined that chemical components and laboratory glassware would be required to conduct the precipitation reaction between calcium chloride and sodium alginate. As the therapeutic agent, to be injected into the hydrogel 'beads', has not yet been determined, a comparable placebo had not been established. Nonetheless, each team member is to conduct research to determine an appropriate therapeutic for the hydrogel adhesive before a comparable placebo may be determined. Research regarding a possible therapeutic agent is to be completed before the week three lab. Once a therapeutic agent is agreed upon, a placebo, of comparable physical properties, will be ordered. The week two activities were completed in preparation for the construction of a preliminary design for the hydrogel adhesive. As such, the most prominent tasks completed for the week three lab, include: the formulation of a bill of materials and research of potential therapeutic agents. The bill of materials, thus far, is as follows:


Bill of Materials
Product Components
Quantity
Price
Ordered Status
Sodium Alginate
4.0 g
$12.95
Yes
Adhesive Materials
N/A
N/A
No
Therapeutic Placebo
N/A
N/A
No
Lab Supplies



Six- Cavity Soap Mold
1
$9.99
Yes
Calcium Chloride
2.0 oz.
$8.29
Yes
150-mL Beaker
2
$10.98
Yes
Syringes
2
$8.99
Yes
Testing Supplies



Food Coloring
29 ml
$8.01
Yes

Total Cost

$59.21


Figure 1:  Bill of Materials



Comments

Popular posts from this blog

Week Five Progress

During week five, more research was done and the group was able to decide on the exact concentrations of calcium chloride to use in making each hydrogel layer as well as in the beads. The higher the concentration of calcium chloride, the more dense the hydrogel layer will be. Thus, for the thin, low-density layer, as well as for the low-density beads, a 5% calcium chloride solution will be used. For the thick, high-density layer, a 7% calcium chloride solution will be used. Refer to Figure 1, below, for a visual of the design. Figure 1: Preliminary Diagram of the Hydrogel Wound Dressing   Another task that was completed this week was additional planning for the testing phase. Once the hydrogel has been constructed, samples of it will be placed into cuvettes, and fluorescently-labeled bovine serum albumin (FITC-BSA) will be injected into the cuvettes, one at a time, in intervals of four hours. This will occur over a period of two days, and at the end of the two day...

Week Three Progress

During Week Three, we discussed and determined our therapeutic agent for the hydrogel module. After extensive research and comparison of our options, we decided the best-suited therapeutic would be zinc oxide. This substance fits our design so well because it is hydrophobic and will slowly disperse through the pores in the bottom hydrogel layer. Zinc oxide has been used in past hydrogel models and has been proven to be effective. It is an agent that has been used in ointments and supplements to treat burns and prevent infections. Likewise, the possibility of overdosing on zinc-oxide necessitates a solution for controlled therapeutic release. The predominant delivery system for zinc oxide is through medicinal cream, the delivery through which enables the therapeutic threshold of zinc oxide to be increased to levels of high toxicity. Symptoms of zinc-oxide overdose include: fever, chills, vomiting, mouth irritation, stomach pain, and yellowing of the eyes and skin. Consequently, the phar...

Week Four Progress

Our focus this week was finding the correct placebo for our design. Prior to this week, we had expected to use zinc oxide in our module but we realized it did not have a high enough molecular weight. Therefore, the zinc oxide would disperse from the hydrogel beads too rapidly. After some research and guidance from our professor, we decided to use Fluorescein Isothiocyanate-Bovine Serum Album (FITC-BSA), which is a hydrophilic protein with a molecular weight of 66 kg/mol [1]. FITC-BSA will also be our signal source for measuring the rate of dispersion from the beads. As seen in Figure 1, FITC-BSA is vivid in color and allows the protein's diffusion throughout the hydrogel to be observed easily. We've decided to initially use 0.25 mg/ml as the concentration of FITC-BSA within our design. Figure 1: FITC-BSA (green) seen in samples of HeLa cells [2] References: [1]  Bovine Serum Albumin Conjugates Product Information , 1st ed. Molecular Probes, 2005. [2] S. Sarker, R....