Progress on the hydrogel adhesive prototype has entailed the finalization of the proposed design. As such, it was determined that differentiation of hydrogel density must be attained by varying the concentration of sodium alginate utilized within the individual hydrogel layers. The initial design had called for the variation of calcium chloride concentration, though it was concluded that the variation in calcium chloride density will not contribute appreciably to the densities of the layers. Moreover, the finalized design will exclude hydrogel bead suspensions, as the beads will not contribute to the release of FITC-BSA. Thus, FITC-BSA will become encapsulated within the high-density hydrogel layer, as shown below in Figure 1. To encapsulate the prototype drug, FITC-BSA will be mixed with sodium alginate before calcium chloride solution is added. To quantify the therapeutic release three hydrogel mixtures will be created, including: a high density layer, a low density layer, and a layered hydrogel mixture. The absorbance of light over time will be measured for each mixture by utilizing a spectrophotometer. Subsequently, the results will be graphed to determine the efficacy of the layered hydrogel design. Ideally, the graphed results of the layered hydrogel mixture will yield a quick release of FITC-BSA over time, before delineating a plateau. The results of the spectrophotometry is expected to be favorable given the structural design of the adhesive. Nonetheless, the need for further progress and revision to the design of the hydrogel adhesive will be determined by the results of the spectrophotometry.
|
Figure 1: Finalized Hydrogel Adhesive Design |
Comments
Post a Comment